
Challenges – Gridded Meteorology Data
The coarseness of the MERRA-2 dataset meant that assumed meteorology 
was only an approximation of local conditions. When compared with 2m 
temperature data directly measured at the stations, we can see some 
regions are better represented than others. 

Training Data
PM2.5 observations were acquired from the EPA’s Air Quality System 
(AQS) monitoring stations. Only stations with 10 years of PM2.5 data 
(2010-2019) were included allowing less than 10% missing values. 
MERRA-2 meteorology and HEMCO emissions (CEDS monthly profiles 
from 2010-2019 were scaled with NEI2011’s hourly and day-of-week 
profiles). MEGAN2.1 was used for biogenic VOC emissions.
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Motivation
Particulate matter with an aerodynamic diameter of less than 2.5 microns 
(PM2.5) is noted for its ability to deposit in small airways and alveoli.1 The 
long and short-term health effects and climate impacts of aerosols motivate 
the need for simulation at both high spatiotemporal resolution and long 
timescales, two needs typically not computationally tractable within the same 
model. PM2.5 concentration and composition vary regionally, sensitive to 
diverse precursor emissions, regional primary sources, and meteorological 
controls on transport and chemistry. While explicit chemical simulation might 
be the goal, data-built models have shown recent successes in PM2.5 
prediction.2 We have trained a random forest using surface observations of 
PM2.5 concentration and traditional gridded chemical transport model 
meteorology and emissions inventories to produce a computationally efficient 
but large-scale model-compatible aerosol prediction scheme.

Takeaways
The emissions related feature importances and model 

performance for non-fire events suggests that the random 
forest is capturing some of the complex, nonlinear 

processes regulating PM2.5 and may even be able to 
provide hints to composition (with much greater 

computationally efficiently than traditional chemical transport 
models). The lack of ‘fire’ related features means this 

approach cannot be used to simulate events of high public 
health importance, however. 

Model
• All features were resampled to be 

hourly resolution. 
• Observation gaps were filled with 

mean-values. 
• The random forest was trained 

on 7 years of data (2010-2016) 
and validated on 3 years of data 
(2017-2019).

• Performance varied across the 
stations in our dataset (Fig. 4)
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Figure 7. Scatterplots 
showing station agreement 
between observed 
temperature and MERRA-
2 meteorology. Regional 
variation is present here 
too!
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Challenges – Infrequent Events
Fire events occur sporadically and are poorly simulated by 
our model. No feature included in our training data explicitly 
accounts for fire on PM2.5 and including such features from 
coarse gridded data is potentially unfeasible.
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Figure 3. EPA AQS sites with >10 years of PM2.5 
measurements; color-coded by climate region. 

Figure 1. Schematic showing variability and complexity of primary and 
secondary sources of PM2.5 in the US. Representing all of these 
sources and chemical processes in any modelling framework is a 
challenge, often requiring sacrifices of spatial resolution or length of 
simulation possible.

Figure 6. Model-measurement 
agreement for this window. We 
see the random forest under-
predicts infrequent, high PM2.5 
concentrations in summer, 
aligning with California’s fire 
season.

Figure 5. An example time series during the validation period 
with fire influence. While the basic structure of the observed 
PM2.5 is captured for typical hours, for the ‘wildfire’ flagged 
episode, the model performs poorly.

Figure 4. Feature importance plots by climate zone showing only the subset of features that consistently were ranked ‘important’ to the 
prediction. Features from MERRA-2 are in red and emissions in brown. Emissions based features vary regionally in ways somewhat 
consistent with observed sources and composition.3 The (presumably spurious) importance of Ertel’s potential vorticity (EPV) is curious 
and in some regions explained by poor predictive ability (features aren’t meaningfully important when the model performs poorly).

Figure 5. Scatter plots showing hourly observed PM2.5 versus simulated PM2.5 concentration for each 
station separated by climate zone. Clear regional differences in model performance are apparent. Data points 
are colored by hour of day and markers indicate seasons to help biases.
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Figure 2. The data sources for our model.
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