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Introduction Can We Interpret Ozone Predictions with Layerwise Relevance Propagation (LRP)? 

• Data selected from the EPA Air Quality System (AQS)’s Los Angeles N. Main Street station.
• The LSTM was trained on hourly data from 2010-2017 
• The model is tested on hourly data from 2018-2019.
• Features included are ozone, carbon monoxide, nitrogen dioxide, wind direction, wind speed, 

outdoor temperature, relative humidity, solar radiation, and ultraviolet radiation.
• LRP for LSTM implementation is sourced from Warnecke et al., 2020, based on the Arras et al., 

2017 model.

• “Black-box” Artificial Intelligence (AI) techniques lack explanation of the results.
• Explainable AI (XAI) techniques seek to overcome this limitation but require validation.
• There is extensive research into the factors influencing ozone in Los Angeles, allowing us to 

evaluate the XAI technique Layerwise Relevance Propagation (Warnecke et al., 2020) on long 
short-term memory (LSTM) models against known ozone influencing factors.

• Ozone is produced through photochemical reactions involving NOx and volatile organic 
compounds. Meteorology can enhance or suppress ozone concentrations (Pusede et al., 2015, 
Kavassalis & Murpy, 2017)

• LRP has been applied in the medical and energy fields (Lundberg et al., 2018, Erdem & Eken, 
2020).

Our aim is to implement LRP XAI on LSTM models trained with ozone time-series data from 
Los Angeles in order to better understand the quality of LRP results.
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Figure 1. LSTM Module Architecture (Olah, 2015).
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LRP calculation of relevance:
• Let the input gate neuron be zg, and the 

source (xi) neuron be zs. Neuron for the next 
module is zj = zg·zs.

• Calculate relevance of the source provided 
with the relevance of the neuron in the next 
module, Rg·Rs=Rj.

Methods

LSTM Model Results

Figure 2. LSTM ozone prediction in comparison to ozone observations for a short example window. 
R2 for all two years of test data is 0.71.
• Our LSTM predicts ozone well with an R2 = 0.71.
• Ozone diurnal trends are captured well, as seen in Fig. 2.

If the LSTM predicts ozone well, why does it predict the mixing ratios it does?
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Figure 3. Example time series 
with 10 member LRP ensemble. 
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Figure 4. (left) and 
Figure 5. (below), box 
covers Q1-Q3 with line 
at median. Whiskers 
include data within 
1.5x the IQR.
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• Note: LRP relevancies sum to the LRP ozone predictions. 
When there is more ozone (summer, daytime), LRP 
relevancies are higher.

• In Fig. 3, the individual ensemble members for the LRP 
relevancies are not consistent. For any given ozone 
prediction, at the hourly scale, LRP does not identify a 
consistent driver.

• While individual ensemble members don’t have predictive 
power, LRP statistics point to temperature, relative 
humidity, and NO driving ozone concentrations. This is 
consistent with chemistry!

LRP may provide meaningful information about main 
drivers of ozone, but does not seem to provide insights 
about individual predictions, as seen by the spread in 

ensemble members for given points in time.

Questions
• How/should LRP be used going forward? Given our findings, 

what use cases would LRP be beneficial for?
• What assessment is required to explore the features and 

functionality of LRP, and other XAI techniques, before they are 
applied?
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Figure 6. (left) and 
Figure 7. (below), box 
covers Q1-Q3 with line 
at median. Whiskers 
include data within 
1.5x the IQR.
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